Tag Archives: 3.5.c

3.5.c Wide metric



EIGRP Wide Metrics

The Enhanced Interior Gateway Routing Protocol (EIGRP) composite cost metric (calculated using the bandwidth, delay, reliability, load, and K values) is not scaled correctly for high-bandwidth interfaces or Ethernet channels, resulting in incorrect or inconsistent routing behavior. The lowest delay that can be configured for an interface is 10 microseconds. As a result, high-speed interfaces, such as 10 Gigabit Ethernet (GE) interfaces, or high-speed interfaces channeled together (GE ether channel) will appear to EIGRP as a single GE interface. This may cause undesirable equal-cost load balancing. To resolve this issue, the EIGRP Wide Metrics feature supports 64-bit metric calculations and Routing Information Base (RIB) scaling that provide the ability to support interfaces (either directly or via channeling techniques like port channels or ether channels) up to approximately 4.2 terabits.


The 64-bit metric calculations work only in EIGRP named mode configurations. EIGRP classic mode uses 32-bit metric calculations.

To accommodate interfaces with bandwidths above 1 gigabit and up to 4.2 terabits and to allow EIGRP to perform path selections, the EIGRP composite cost metric formula is modified. The paths are selected based on the computed time. The time that information takes to travel through links is measured in picoseconds. The interfaces can be directly capable of these high speeds, or the interfaces can be bundles of links with an aggregate bandwidth greater than 1 gigabit.

Metric = [(K1*Minimum Throughput + {K2*Minimum Throughput} / 256-Load) + (K3*Total Latency) + (K6*Extended Attributes)]* [K5/(K4 + Reliability)]

Default K values are as follows:

  • K1 = K3 = 1
  • K2 = K4 = K5 = 0
  • K6 = 0

The EIGRP Wide Metrics feature also introduces K6 as an additional K value for future use.

By default, the path selection scheme used by EIGRP is a combination of throughput (rate of data transfer) and latency (time taken for data transfer), and the formula for calculating the composite cost metric is as follows:

Composite Cost Metric = (K1*Minimum Throughput) + (K3*Total Latency)

Minimum Throughput = (107* 65536)/Bw), where 65536 is the wide-scale constant.

Total Latency for bandwidths below 1 gigabit = (Delay*65536)/10, where 65536 is the wide-scale constant.

Total Latency for bandwidths above 1 gigabit = (107* 65536/10)/ Bw, 65536 is the wide-scale constant.